Globular clusters are treasure troves of exotic millisecond pulsars, for a recent scientific overview see reference [23]. The cores of globular clusters have stellar densities 10^3 - 10^4 times greater than in the Galactic field; this promotes the formation of binary systems in which a neutron star can be recycled to millisecond rotation rates via the transfer of matter and angular momentum from a Roche-lobe-filling companion. This extreme stellar density can also lead to exchange interactions, which create bizarre pulsar systems, unlike anything so-far seen in the Galactic field. Currently there are 146 pulsars known in 28 globular clusters - including the fastest-spinning pulsar known[24], exotic eccentric binaries suitable for neutron star mass measurements [25] and a unique triple system with a planetary companion [26]. Literally all of these 146 pulsars are visible to MeerKAT and MeerTime plans a sensitive, and comprehensive globular cluster pulsar timing campaign. Combining MeerKAT timing data with up to three decades of archival measurements from GBT, Arecibo, and Parkes, MeerTime will probe the spin, orbital, and proper motions of these pulsars in unprecedented detail and measure previously inaccessible system parameters that will allow us to probe accretion physics, dense matter, gravitational theories, and the evolution and properties of the clusters themselves in exquisite detail. From a practical point of view, timing globular cluster pulsars also provides a great efficency because in some cases (e.g. M28, 47 Tucanae and Terzan 5) dozens of millisecond pulsars can be observed simultaneously. MeerKAT will revolutionize searches of southern globular clusters via TRAPUM and the long-term timing of these and existing pulsars via MeerTime. To achieve sensitivity to 10 µJy pulsars in these clusters, MeerTime plans typically 1-hr timing sessions for these clusters.
References:
[23] J. Hessels, A. Possenti, M. Bailes, C. Bassa, P. C. C. Freire, D. R. Lorimer, R. Lynch, S. M. Ransom and I. H. Stairs, Pulsars in Globular Clusters with the SKA, Advancing Astrophysics with the Square Kilometre Array (AASKA14) , p. 47 (April 2015).
[24] J. W. T. Hessels, S. M. Ransom, I. H. Stairs, P. C. C. Freire, V. M. Kaspi and F. Camilo, A Radio Pulsar Spinning at 716 Hz, Science 311, 1901 (March 2006).
[25] S. M. Ransom, J. W. T. Hessels, I. H. Stairs, P. C. C. Freire, F. Camilo, V. M. Kaspi and D. L. Kaplan, Twenty-One Millisecond Pulsars in Terzan 5 Using the Green Bank Telescope, Science 307, 892 (February 2005).
[26] S. Sigurdsson, H. B. Richer, B. M. Hansen, I. H. Stairs and S. E. Thorsett, A Young White Dwarf Companion to Pulsar B1620-26: Evidence for Early Planet Formation, Science 301, 193 (July 2003).
References:
[23] J. Hessels, A. Possenti, M. Bailes, C. Bassa, P. C. C. Freire, D. R. Lorimer, R. Lynch, S. M. Ransom and I. H. Stairs, Pulsars in Globular Clusters with the SKA, Advancing Astrophysics with the Square Kilometre Array (AASKA14) , p. 47 (April 2015).
[24] J. W. T. Hessels, S. M. Ransom, I. H. Stairs, P. C. C. Freire, V. M. Kaspi and F. Camilo, A Radio Pulsar Spinning at 716 Hz, Science 311, 1901 (March 2006).
[25] S. M. Ransom, J. W. T. Hessels, I. H. Stairs, P. C. C. Freire, F. Camilo, V. M. Kaspi and D. L. Kaplan, Twenty-One Millisecond Pulsars in Terzan 5 Using the Green Bank Telescope, Science 307, 892 (February 2005).
[26] S. Sigurdsson, H. B. Richer, B. M. Hansen, I. H. Stairs and S. E. Thorsett, A Young White Dwarf Companion to Pulsar B1620-26: Evidence for Early Planet Formation, Science 301, 193 (July 2003).